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Abstract

Background

A novel influenza virus has emerged to produce a global pandemic four times in the past

one hundred years, resulting in millions of infections, hospitalizations and deaths. There is

substantial uncertainty about when, where and how the next influenza pandemic will occur.

Methods

We developed a novel mathematical model to chart the evolution of an influenza pandemic.

We estimate the likely burden of future influenza pandemics through health and economic

endpoints. An important component of this is the adequacy of existing hospital-resource

capacity. Using a simulated population reflective of Ottawa, Canada, we model the potential

impact of a future influenza pandemic under different combinations of pharmaceutical and

non-pharmaceutical interventions.

Results

There was substantial variation in projected pandemic impact and outcomes across interven-

tion scenarios. In a population of 1.2 million, the illness attack rate ranged from 8.4% (all inter-

ventions) to 54.5% (no interventions); peak acute care hospital capacity ranged from 0.2%

(all interventions) to 13.8% (no interventions); peak ICU capacity ranged from 1.1% (all inter-

ventions) to 90.2% (no interventions); and mortality ranged from 11 (all interventions) to 363

deaths (no interventions). Associated estimates of economic burden ranged from CAD $115

million to over $2 billion when extended mass school closure was implemented.

Discussion

Children accounted for a disproportionate number of pandemic infections, particularly in

household settings. Pharmaceutical interventions effectively reduced peak and total pan-

demic burden without affecting timing, while non-pharmaceutical measures delayed and

attenuated pandemic wave progression. The timely implementation of a layered intervention

bundle appeared likely to protect hospital resource adequacy in Ottawa. The adaptable
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nature of this model provides value in informing pandemic preparedness policy planning in

situations of uncertainty, as scenarios can be updated in real time as more data become

available. However—given the inherent uncertainties of model assumptions—results should

be interpreted with caution.

1. Introduction

Influenza is an infectious disease that transmits between humans via inhalation of viral parti-

cles expelled by infected individuals during coughing or sneezing and carried in aerosol, respi-

ratory droplets and fomites [1]. Though individuals experience infection differently, it often

involves a combination of respiratory and systemic symptoms [2]. While generally self-limit-

ing, influenza-related hospitalization and death is commonly associated with lower respiratory

tract and neurological complications; in fact, influenza is the most deadly vaccine-preventable

disease in North America [3]. As an RNA virus with a high mutation rate, humans are unable

to maintain adequate long term immunity to influenza infection, leading to annual outbreaks

of seasonal influenza [4]. In the United States, seasonal influenza accounts for between 3,000

and 49,000 deaths each year [5]. In recent years, the average number of influenza-associated

hospitalizations and deaths in Canada is estimated to be approximately 12,000 and 3,500,

respectively [6, 7].

These figures do not, however, reflect the more catastrophic potential of a pandemic influ-

enza outbreak. Triggered by an antigenic shift—a reassortment of viral segments creating a

new influenza strain—that creates a novel influenza virus to which humans possess little to no

immunity, an influenza pandemic has the potential to transmit and spread rapidly across the

globe [8]. This has happened on four occasions over the past one hundred years, leading to

tens of millions of infections, hospitalizations and deaths [9–13]. While most of this burden

was driven by the 1918 Spanish flu pandemic, even the most recent 2009 Swine flu pandemic

is estimated to have resulted in as many as 575,400 deaths globally [12, 14], even though it is

considered to be a mild strain compared to past pandemics [15]. Were a pandemic strain of a

pathogenicity comparable to that of the 1918 outbreak to emerge today, projections suggest it

could result in 21–31 million deaths worldwide [16].

Influenza pandemics emerge at uneven and unpredictable intervals [1, 17, 18]. The current

global landscape, however, is one that is supportive of pandemic emergence. Unprecedented

levels of human–animal interaction, viral diversity and extensive international travel collec-

tively increase the threat of viral reassortment, crossover to humans and global spread [19–24].

The threat of a global pandemic and its potential consequences present major challenges for

public health and emergency preparedness policy efforts.

Given that the epidemiological features of a pandemic cannot be known until after its

emergence, there is significant uncertainty regarding best practices in resource- and control-

strategy planning [25, 26]. This is problematic, as pandemic planning is crucial to limiting

illness, death and essential-service disruption, thereby mitigating the health, social and eco-

nomic burden of pandemics. Mathematical models of disease transmission, accounting for

the uncertainty and randomness inherent in pandemic emergence and spread, have become

valuable tools in pandemic planning and management [27, 28]. Given that empirical field stud-

ies in pandemic situations are generally infeasible or unethical, they are of vital importance.

Unfortunately, important gaps persist in the field of pandemic modelling, particularly with

respect to accessibility, assessment of resource capacity and economic evaluation [29]. The

model presented herein seeks to address these gaps.
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This paper presents initial findings generated by InFluNet, a new, discrete-time simulation

model that combines ordinary differential equations (ODEs) with stochastic approaches. Designed

to capture the range of factors influencing pandemic transmission—while remaining accessible

to public-health practitioners lacking formal modelling training—InFluNet combines epidemio-

logical and demographic data to allow prediction of the health and economic burdens associated

with future pandemics. Emphasizing the adequacy of hospital-resource capacity, the model

allows evaluation of the potential for community intervention strategies to contain pandemic

spread and ensure hospital resource adequacy. Results should inform policy-planning for inter-

ventions targeting specific stages of the disease life-cycle, and specific settings (household, school,

workplace, and community), supporting more efficient and cost-effective control strategies.

2. Methods

InFluNet is a population-level, discrete-time simulation model that builds on previous deter-

ministic and stochastic influenza models [30–37]. The model combines differential equations

estimating the rate of transmission contacts and disease progression with stochastic methods

of estimating social-mixing behaviour and transmission probability. This dual approach effec-

tively describes the average behaviour of larger urban populations, while incorporating the

uncertainty associated with transmissibility and pathogenicity of a new influenza strain. This

section describes the InFluNet simulation model, as well as the data inputs and outputs associ-

ated with the model. No ethical approval was required for this study, as all hospital data ana-

lyzed were previously anonymized and publically available. No individual patient data were

independently analyzed in this research. The model is described in brief below, with a more

detailed discussion of the model structure, background and approach included in S1 File.

2.1 Social contact network

The model is structured to represent three independent transmission–time/location steps over

the course of the day: household, school/work and community. These estimates are based

upon empirical data from a representative North American municipality [38] and closely

resemble contact rate assumptions from past influenza modelling studies of Ontario cities [33,

39]. InFluNet uses ODEs to estimate age-specific contact rates between various age groups.

Five age groups are identified: infant (0–4), child (5–18), young adult (19–29), adult (30–64)

and senior (65+). This reflects age groupings of past studies [30, 36, 37, 40], based on previ-

ously observed patterns of pandemic influenza transmission and outcomes. Individuals will

interact with others at different rates, both within and outside their age groups; daily contact

rates by age and location are included in S1 File (S1.1).

2.2 Transmissibility

InFluNet uses a “next-generation operator” approach described previously in a model of small-

pox [41] and reflective of a heterogeneous population [42]. In this approach, transmissibility

can be described as follows:

b ¼ bC þ bA þ bAV ð1Þ

where

bC ¼ g � aC � ZC � ð1 � e� stÞ �
IC

N
ð2Þ
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bA ¼ g � aA � ZA � ð1 � e� stÞ �
IA

N
ð3Þ

and

bAV ¼ g � aAV � ZAV � ð1 � e� stÞ �
IAV

N
ð4Þ

The rate of disease transmission from symptomatic (βC), asymptomatic (βA) and symptom-

atic treated (βAV) individuals depends on the six parameters [38, 41] described in Table 1.

More information on our transmissibility assumptions is available in S1 File (S1.2).

2.3 Model structure

InFluNet combines demographic, hospital and intervention data, allowing simulation of a

pandemic influenza outbreak under millions of possible scenarios. A simulation is run five

times, with the output value being averaged across simulations and reported with 95% confi-

dence intervals calculated via the standard-deviation approach. The InFluNet model follows

the general structure of an age-dependent SEIR (susceptible-exposed-infected-recovered)

model, a structure that has predicted outbreaks with relative accuracy in the past [46–49]. The

transmission model flow diagram is illustrated in Fig 1.

Table 1. Transmissibility function parameters.

Symbol Definition Sample value References Range

γ Number of effective contacts As per contact tables [41] 0.01–10

(contacts/day)

α Susceptibility 1.0 for infants, children,

and young adults;

0.95 for adults;

0.65 for seniors

[43] 0–1

η Infectivity 1.0 Assumed 0–1

σ Duration of contacts As per contact tables [41] 1/2–1/6 (days/

contact)

τ Mean number of infections per time within a contact between a susceptible and

infected individual, assuming full infectivity and susceptibility

0.275 [16, 26, 44,

45]

0.17–0.42

https://doi.org/10.1371/journal.pone.0179315.t001

Fig 1. Transmission model flow diagram.

https://doi.org/10.1371/journal.pone.0179315.g001
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Susceptible individuals (S) can receive successful vaccination (V), failed vaccination (SV) or

antiviral prophylaxis (AVP). While individuals in the “V” group are protected, individuals

in “S”, “SV” or “AVP” compartments can be infected, moving into a latent period (E). From

here they become either symptomatically (IC) or asymptomatically (IA) infectious. Of those in

the “IC” group, some will require antiviral therapy (AVT), hospitalization (H) and ICU care

(ICU). A small proportion of those in the “IC”, “H”, and “ICU” groups will experience a fatal

infection. From the flow chart in Fig 1, we arrive at the system of ODEs presented below. A

detailed discussion of the model structure and parameters is included in S1 File (S1.3). Inter-

vention parameters are discussed in Section 2.4.

dS
dt
¼ � ðNC þ zþ bÞ � S Susceptible ð5Þ

dE
dt
¼ b � ðSþ f � SVÞ � E � ε Latent Infected ð6Þ

dSV

dt
¼ ð1 � VeÞ � NC � S � f � SV � b Susceptible with failed vaccination ð7Þ

dV
dt
¼ Ve � NC � S Vaccinated ð8Þ

dSAVP

dt
¼ z � S � b � SAVP Antiviral prophylaxis ð9Þ

dEAVP

dt
¼ b � SAVP � EAVP � ε Latent infected treated with prophylaxis ð10Þ

dIC

dt
¼

2

3
� E � ε � ICðyþ r þ zÞ Infected Symptomatic ð11Þ

dIA

dt
¼

1

3
� ðE þ EAVPÞ � ε � IA � r Infected Asymptomatic ð12Þ

dAV
dt
¼ IC � zþ

2

3
� EAVP � ε � AV ðyþ rÞ Treated with Antivirals ð13Þ

dH
dt
¼ ðIC þ AV Þ � y � ðrHosp þ wHosp þ rICUÞ � H Hospitalized ð14Þ

dICU
dt
¼ rICU � H � ðrICU þ wICUÞ � ICU Intensive Care Unit ð15Þ

Patient-demand data is plotted against hospital-resource data obtained from the Canadian

Institute for Health Information and Québec Ministry of Health and Social Services [50, 51].

Combining these hospital-resource data with the Census demographic data, we generated

individual profiles for each Canadian CMA; details on hospital-resource estimation are

included in S1 File (S1.4), while the Ottawa–Gatineau profile used for the following analysis is

included in S1 Table.
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The model generates results relating to health and economic outcomes. Health outcomes

summarize consequences in terms of the number of symptomatic cases, hospitalizations, ICU

admissions, ventilator demand and deaths by age, location and as a percentage of existing

capacity. These data are reported on a daily basis and summarized over the course of the entire

outbreak. Economic evaluations are conducted in two ways: by estimating the overall eco-

nomic burden associated with a pandemic by aggregating influenza- and intervention-associ-

ated costs, and by calculating the relative cost-effectiveness of different intervention strategies.

The latter is assessed by calculating the cost per life-year saved, relative to a “no intervention”

scenario. Economic estimates are generated by scaling health and intervention endpoints (as

generated by the model) by a per-case economic cost, as given in Table 2. The internationally

proposed cost-effectiveness threshold of CAD $50,000 and a 1.5% annual discounting rate

were used to calculate costs associated with mortality [52–55]. A more detailed discussion of

model outputs is included in S1 File (S1.5).

2.4 Intervention effectiveness

InFluNet allows the evaluation of eight different interventions (vaccination, antiviral treat-

ment, antiviral prophylaxis, school closure, community-contact reduction, personal protective

measures, voluntary isolation and quarantine), with coverage, intensity and effectiveness mea-

sures determined by user inputs. In this study, we provide a “Best Guess” (BG), “Worst Case”

(WC), and “Best Case” (BC) for each parameter, in order to generate a range of estimated

intervention impacts. Tables 3 and 4 summarize the parameter definitions and user input

ranges for each intervention parameter. The tables also gives the parameter values we used in

this modelling study, as well as the sources that informed these values. Where possible, empiri-

cal values from the 2009 pandemic were used; where these were unavailable, we used assump-

tions employed in past modelling studies. Each intervention is also discussed in detail in S1

File (S1.6).

2.5 Analysis

We present summary values for six key outcome measures—cases of illness, hospitalization,

ICU admission, peak acute care demand as a percentage of capacity, peak ICU demand as

a percentage of capacity and death—across all 192 simulations conducted. Multivariate

sensitivity analyses were conducted to evaluate how changes in disease and intervention

Table 2. Economic cost ($CAD) for outcomes of interest.

Economic consequences

Category Unit Cost Citation

Total hospital bed days $1,042/day [56, 57]

Total ICU + ventilator days $2,084/day [56]

Total deaths 0–4: $2,355,172

5–18: $2,207,744

19–29: $1,956,694

30–64: $1,374,086

65+: $424,296

[52, 53]

Total lost school days $91.85/day [33, 58]

Total lost work days $192.55/day [59]

Total vaccinations $20.00/vaccination [56]

Total courses of antivirals $25.00 [56, 57, 60]

Total masks $4.00/mask Estimated

https://doi.org/10.1371/journal.pone.0179315.t002
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characteristics might affect the evolution, progression and control of the pandemic. The effect

of disease parameters was evaluated by conducting simulations under different transmissibility

and pathogenicity assumptions. The effect of intervention parameters was evaluated by com-

paring BC and WC intervention scenarios to the BG scenario.

Table 3. Pharmaceutical intervention parameters. Best-guess scenarios reflect pooled estimates as available. Worst- and best-case scenarios (in terms

of disease transmission but not necessarily resource allocation) reflect 95% confidence intervals where available; otherwise, they reflect ranges of estimates

reported.

Intervention Parameterτ Theoretical

Range

Worst Case

Scenario

Best

Guess

Best Case

Scenario

Citation

Pandemic

vaccination

Time delay (weeks) 0–4 4 0 Pre-vaccination [16, 31]

Coverage (%)* 0–100 25 35 45 [56, 61]

Effectiveness (susceptibility) (%) */** 0–100 40 65 90 [40, 62–65]

Effectiveness (infectivity) (%)** 0–100 20 35 50 [40, 65]

Reduction in hospitalization rate (%)* 0–100 25 60 90 [66]

Antiviral

treatment

Coverage (% infected that seek treatment)** 0–100 30 50 70 [67]

Effectiveness (infectivity) (%)* 0–100 57 75 82 [31, 39, 68–

70]

Reduction in hospitalization rate (%)* 0–100 0 10 40 [71]

Resistant strain Yes/No Yes No No None

Antiviral

prophylaxis

Coverage (% of households, workplaces, and

schools receiving prophylaxis)**
0–100 10 35 60 [30]

Effectiveness (susceptibility) (%)* 0–100 10 30 50 [32, 71]

Effectiveness (infectivity) (%)*/** 0–100 57 75 82 [31, 39, 68–

70]

Reduction in hospitalization rate (%)* 0–100 0 10 40 [71]

Resistant strain Yes/No Yes No No None

τ* approximated from empirical studies

** approximated from modelling studies

*** approximated from qualitative studies

https://doi.org/10.1371/journal.pone.0179315.t003

Table 4. Non-pharmaceutical intervention parameters. Best-guess scenarios reflect pooled estimates as available. Worst- and best-case scenarios (in

terms of disease transmission but not necessarily resource allocation) reflect 95% confidence intervals where available; otherwise they reflect ranges of esti-

mates reported.

Intervention Parameterτ Theoretical

Range

Worst Case

Scenario

Best

Guess

Best Case

Scenario

Citation

School closure Adults that will be redistributed

(%)*
0–100 8 20 33 [72]

Community-contact reduction Reduction in community-contact

rate (%)**
0–100 25 50 75 [31, 60, 73,

74]

Hand hygiene Effectiveness (%)* 0–100 3 26 44 [75–79]

Adherence (%)* 0–100 20 38 55 [75, 80–82]

Mask use Effectiveness (%)* 0–100 8 60 82 [83–87]

Adherence (%)* 0–100 1 3 5 [88, 89]

Voluntary isolation Adherence (%)** 0–100 10 30 50 [90, 91]

Quarantine (subtracted from VI

adherence

Adherence (%)*** 0–100 5 15 25 [92]

τ: * approximated from empirical studies

** approximated from modelling studies

*** approximated from qualitative studies

https://doi.org/10.1371/journal.pone.0179315.t004
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We also present the results of a complete analysis for seven key intervention bundles of

interest. The scenarios and reasons for their emphasis are indicated below. Taken together,

this two-tiered analysis should provide the breadth and depth of analysis needed to inform

future pandemic planning.

1. No intervention: establish a baseline prediction.

2. Vaccination and antiviral treatment: assess the impact of commonly implemented pharma-

ceutical interventions in the absence of any non-pharmaceutical measures.

3. Vaccination, antiviral treatment and antiviral prophylaxis: assess the impact of the full

range of pharmaceutical interventions that could be employed.

4. Community-contact reduction, personal protective measures and voluntary isolation:

assess the impact of minimally invasive non-pharmaceutical interventions in cases where

pharmaceutical measures may be unavailable.

5. School closure, community-contact reduction, personal protective measures, voluntary iso-

lation and quarantine: assess the impact of the full scope of non-pharmaceutical measures

in cases where pharmaceutical measures may be unavailable.

6. Community-contact reduction, personal protective measures, voluntary isolation and anti-

viral treatment: assess the impact of minimally disruptive non-pharmaceutical measures

and antiviral treatment in cases where vaccination may not yet be available.

7. All interventions: assess the impact of implementing the full range of available

interventions.

2.6 Validation

The InFluNet model was validated using four approaches, as informed by a recent review of

mathematical modelling validation protocols [29]: parameterization, sensitivity analysis, struc-

tural validation and predictive validation. Parameterization involves the selection of values

from empirical data; this was done wherever possible, prioritizing Canadian contexts where

data were available. Multivariate sensitivity analyses were conducted to evaluate the impact of

change in certain disease and intervention parameters, as described in Section 2.5. Structural

validity refers to the extent to which the model is consistent with current theory and practices,

reflecting the way in which the real-world system works: InFluNet is based in epidemic theory

and builds on the work of previously published transmission [38, 41] and intervention [33, 56,

93, 94] modelling research.

Predictive validation assesses the extent to which the model will produce accurate data: this

is the most difficult element of mathematical modelling validation, particularly in the case of

pandemic influenza, where there is such heterogeneity in the disease, population and interven-

tion parameters, and the majority of disease transmission processes are unreported and invisi-

ble to health-surveillance agencies. In an effort to overcome this challenge, we fit the model to

past experiences of the 2009 pandemic by estimating values for the transmissibility parameter

τ, which was estimated numerically from initial conditions and contact rates [38, 41]. We then

conducted an assessment of the model’s predictive validity by comparing its predicted attack

rate in a pandemic scenario with a transmissibility parameter representative of the 2009 H1N1

pandemic to both empirical data [25, 95] and the results of a previously published pandemic

study that calibrated its inputs to the 2009 H1N1 pandemic [33]. Taking Hamilton, Ontario, as

a simulated study population, Andradottir et al [33] constructed a simulation model that
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predicted an illness attack rate of 36.8%; taking the Ottawa–Gatineau CMA as a study popula-

tion under similar assumptions, InFluNet predicted an illness attack rate of 41.0% (95% CI:

40.9–41.2%), though it was noted that Andradottir et al assumed a higher rate of pre-existing

immunity. Given this, the small differences were interpreted as supportive of the predictive

validity of our model. In this way, we validated our transmissibility parameter estimates

against both the basic reproduction number of previous models [33] and empirical Canadian

pandemic H1N1 attack rates [25, 95]. This was essential to anchoring a representative trans-

missibility parameter, as it is not enough to assume that reproductive rates will be identical

across differential equation models with different transmission assumptions.

3. Results

The subsections below present results related to symptomatic influenza infection, hospitaliza-

tion, ICU admission, hospital resource demand, mortality and economic burden. Table 5

summarizes the basic findings of the seven key intervention scenarios of interest. Results from

all 192 simulations are discussed in their respective subsections, with summary tables included

in the supplementary material.

3.1 Symptomatic infection

Under assumptions reflective of an influenza pandemic of transmissibility similar to the 1957

H2N2 pandemic, the InFluNet model projected that, in the absence of any intervention, about

677,546 symptomatic influenza infections would occur in the Ottawa–Gatineau CMA. This

amounts to an illness attack rate of 53.4%. No single intervention implemented in isolation

successfully brought the attack rate under 30%. Of the eight interventions, vaccination, per-

sonal protective measures, combined voluntary isolation and quarantine procedures resulted

in the greatest reductions, producing attack rates of 50.0%, 45.5% and 33.9%, respectively.

Antiviral treatment, antiviral prophylaxis, school closure and community-contact reduction

produced only small reductions in illness attack rate, whether implemented alone or in combi-

nation with other interventions.

The timely initiation of multiple pandemic control measures resulted in significant reduc-

tions in symptomatic case numbers. This was particularly true when vaccination was com-

bined with personal protective measures and isolation of infected individuals. Even in the

absence of any pharmaceutical intervention, adherence to rigorous non-pharmaceutical pro-

tocols—school closure, community-contact reduction, personal protective measures, volun-

tary isolation and quarantine—resulted in a reduction of the illness attack rate to 15.2%, by

Table 5. Summary of health-outcome measures from simulations of seven key intervention scenarios.

Intervention*
Outcome

Symptomatic Cases Hospitalizations ICU Deaths

None 677,546 2,472 580 363

V+AVT 622,681 815 192 118

V+AVT+AVP 600,394 765 180 109

CCR+PPM+VI 203,771 634 151 65

CCR+PPM+VI+AVT 200,537 560 133 58

SC+CCR+PPM+Q 189,015 550 132 56

SC+CCR+PPM+Q+ V+AVT+AVP 104,051 108 26 11

*V = vaccination; AVT = antiviral treatment; AVP = antiviral prophylaxis; CCR = community-contact reduction; PPM = personal protective measures;

VI = voluntary isolation; Q = voluntary isolation and quarantine; SC = school closure

https://doi.org/10.1371/journal.pone.0179315.t005
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delaying peak pandemic transmission beyond the 100-day simulation interval. Modelling of all

eight interventions implemented in conjunction reduced the illness attack rate to 8.4%. Results

of all 192 simulations are included in S2 Table.

With no intervention, the relative proportions of symptomatic infection approximately

mirrored the age-stratified population distribution. Table 6 presents cases of symptomatic

infection by age group, along with a calculation of the percentage of all cases represented by

each age group.

While pharmaceutical interventions did little to redistribute the age-specific burden of

influenza infection, non-pharmaceutical interventions appear to shift the burden towards

younger age groups. This may be because measures like school closure and community-con-

tact reduction redistribute more infections to the household, where children tend to be more

prone to infection than adults. Table 7 presents the distribution of transmission events by

location, along with a calculation of the percentage of all cases represented by each location.

Results suggest that pharmaceutical measures have little impact on the role of different loca-

tions in influenza transmission, but that non-pharmaceutical measures—school closures in

particular—redistribute infection events to the household and community.

Fig 2 presents the number of new infections by day over the first 100 days of a pandemic

influenza outbreak. Of interest is that pharmaceutical interventions alone (orange and grey

lines) appear to result in a contraction of the pandemic peak without affecting its shape; under

cases of pharmaceutical intervention—as with no intervention—transmission begins to accel-

erate about a month after infected individuals were added to the simulation, and there is only

a small delay in the pandemic peak. Conversely, aggressive non-pharmaceutical interventions,

which implement multiple containment measures in parallel, can delay the pandemic beyond

the assumed window for the pandemic wave. Personal protective measures and voluntary iso-

lation seem to account for the majority of this effect, with only small changes resulting from

the further addition of community-contact reduction, school closure, quarantine or pharma-

ceutical measures.

3.2 Hospitalization

A total of 2,472 pandemic-associated hospitalizations were projected under a “no intervention”

scenario. As seen in Table 5, both pharmaceutical and non-pharmaceutical interventions were

Table 6. Predicted number of cases of symptomatic infection by intervention type, and percentage of total infections accounted for by each

group.

Intervention Age group

Infant Child Young adult Adult Senior Total

None 39,628 111,066 103,976 344,858 78,018 677,546

5.8% 16.4% 15.3% 50.9% 11.5% 100.0%

V+AVT 36508 101985 95567 317617 71004 622681

5.9% 16.4% 15.3% 51.0% 11.4% 100.0%

V+AVT+AVP 35270 98279 92158 306757 67930 600394

5.9% 16.4% 15.3% 51.1% 11.3% 100.0%

CCR+PPM+VI 17427 36467 24842 105413 19622 203771

8.6% 17.9% 12.2% 51.7% 9.6% 100.0%

CCR+PPM+VI+AVT 17183 35893 24427 103747 19287 200537

8.6% 17.9% 12.2% 51.7% 9.6% 100.0%

SC+CCR+PPM+Q 17998 53368 25040 72406 20204 189016

9.5% 28.2% 13.2% 38.3% 10.7% 100.0%

SC+CCR+PPM+Q+V+AVT+AVP 10102 28481 13196 41842 10430 104051

9.7% 27.4% 12.7% 40.2% 10.0% 100.0%

https://doi.org/10.1371/journal.pone.0179315.t006
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effective in reducing the number and rate of hospitalizations. As a result, there was substantial

variation in the number of hospitalizations that could arise under different intervention sce-

narios, ranging from 2,472 (no intervention) to 108 (all eight interventions). Hospitalization

projections for all 192 intervention scenarios are presented in S3 Table.

Table 8 presents the age-stratified hospitalization totals across the seven intervention bun-

dles of interest. Infants and seniors experienced a disproportionate number of hospitalizations

given their population sizes, accounting for 7.4% and 28.8% of hospitalizations despite repre-

senting 5.7% and 12.6% of the total population, respectively. Children and adults had dispro-

portionately low hospitalization rates, accounting for 4.2% and 7.8% of hospitalizations,

despite representing 16.4% and 15.3% of the population, respectively. While pharmaceutical

interventions did little to redistribute the hospitalization burden—as they were not modelled

to target particular age groups—non-pharmaceutical measures resulted in higher relative bur-

dens among infants, children and adults, though total hospitalizations decreased across all age

groups.

Table 7. Transmission events by location, and percentage of total infections accounted for by each location.

Intervention Location

Household School/work Community Total

None 337,135 233,370 107,040 677,546

49.8% 34.4% 15.8% 100.0%

V+AVT 309,759 214,515 98,407 622,681

49.7% 34.5% 15.8% 100.0%

V+AVT+AVP 298,522 206,797 95,075 600,394

49.7% 34.4% 15.8% 100.0%

CCR+PPM+VI 101,447 71,084 31,240 203,771

49.8% 34.9% 15.3% 100.0%

CCR+PPM+VI+AVT 99,827 69,962 30,748 200,537

49.8% 34.9% 15.3% 100.0%

SC+CCR+PPM+Q 105,416 42,435 41,165 189,016

55.8% 22.5% 21.8% 100.0%

SC+CCR+PPM+Q+V+AVT+AVP 57,076 24,453 22,522 104,051

54.9% 23.5% 21.6% 100.0%

https://doi.org/10.1371/journal.pone.0179315.t007

Fig 2. New infections by day under seven key intervention scenarios.

https://doi.org/10.1371/journal.pone.0179315.g002
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Fig 3 presents findings relating to the demand for acute-care hospital beds over the first 100

days of a pandemic influenza outbreak. Similar to the observed effects on symptomatic infec-

tions, pharmaceutical interventions resulted in a contraction of peak demand, while layered

non-pharmaceutical interventions resulted in its delay and attenuation. Peak acute care

demand ranged from 13.8% (no intervention) to 0.2% (all eight interventions). The peak hos-

pitalization demand for all 192 intervention scenarios is summarized in S4 Table.

3.3 Intensive care unit admission

In a pandemic where no intervention measures are implemented, InFluNet simulations pro-

jected approximately 580 ICU admissions over the first 100 days of the outbreak. As with

acute-care hospitalization, there is a broad range of ICU demand scenarios, dependent on the

intervention scenario being simulated; total ICU admissions ranged from 580 to 26 (all eight

Table 8. Predicted number of hospitalizations, and percentage of total hospitalizations accounted for by each group.

Intervention

Age group

Infant Child Young adult Adult Senior Total

None 184 104 193 1279 712 2472

7.4% 4.2% 7.8% 51.7% 28.8% 100.0%

V+AVT 61 34 64 423 234 816

7.5% 4.2% 7.8% 51.8% 28.7% 100.0%

V+AVT+AVP 58 32 60 398 218 766

7.6% 4.2% 7.8% 52.0% 28.5% 100.0%

CCR+PPM+VI 71 30 40 339 154 634

11.2% 4.7% 6.3% 53.5% 24.3% 100.0%

CCR+PPM+VI+AVT 63 26 35 300 136 560

11.3% 4.7% 6.2% 53.6% 24.3% 100.0%

SC+CCR+PPM+Q 74 45 40 234 158 550

13.4% 8.2% 7.2% 42.5% 28.7% 100.0%

SC+CCR+PPM+Q+V+AVT+AVP 15 8 7 48 30 108

13.4% 7.5% 6.9% 44.4% 27.8% 100.0%

https://doi.org/10.1371/journal.pone.0179315.t008

Fig 3. Daily acute-care hospital demand, charted as the percentage of all acute-care hospital beds in

the Ottawa–Gatineau CMA, under seven key intervention scenarios.

https://doi.org/10.1371/journal.pone.0179315.g003
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interventions). Many moderate intervention scenarios combining a pharmaceutical and non-

pharmaceutical intervention resulted in a range of 100 to 400 ICU admissions. The ICU

admission estimates for all 192 intervention scenarios are presented in S5 Table.

Table 9 presents estimates of age-stratified ICU admission, alongside a calculation of the

proportion of total admissions accounted for by each age group. As with acute-care hospitali-

zation, infants and seniors represented a disproportionately high share of the ICU admissions,

reflective of our assumption that infants and seniors were more likely to experience critical ill-

ness as a result of complicated influenza infection. This distinction was even more pronounced

in infants, which represented 11.9% of ICU admissions under a “no intervention” scenario,

despite representing only 5.7% of the total population. Similar to acute-care hospitalization,

pharmaceutical measures were not found to significantly affect the distribution of age-specific

ICU admission; non-pharmaceutical measures redistributed admissions towards younger age

groups, while reducing the total number of admissions.

Fig 4 presents the findings relating to daily demand for ICU beds, as a percentage of the

Ottawa–Gatineau CMA ICU capacity. Again, pharmaceutical measures resulted in a contrac-

tion of the pandemic peak, while layered non-pharmaceutical measures produced a dramatic

attenuation of the wave itself. Peak ICU demand ranged from 90.2% (no interventions) to

1.1% (all eight interventions). The peak ICU demand for all 192 intervention scenarios is sum-

marized in S6 Table.

3.4 Mortality

The InFluNet model projected 363 pandemic-related deaths under a “no intervention” scenario.

Rigorous non-pharmaceutical interventions and most intervention scenarios incorporating vacci-

nation reduced this figure to below 100, while scenarios modelling antiviral treatment, prophy-

laxis and more moderate non-pharmaceutical interventions tended to predict between 100 and

300 deaths. The mortality estimates for all 192 intervention scenarios are presented in S7 Table.

Age-specific mortality rates are presented in Table 10, alongside the proportion of the total

mortality estimate for each age group. Seniors are over-represented with regard to mortality,

accounting for 41.2% of deaths in the “no intervention” scenario. This was due in part to the

assumption that additional mortality would occur in seniors outside of the hospital setting and

Table 9. Predicted number of ICU admissions, and percentage of total admissions accounted for by each group.

Intervention

Age group

Infant Child Young adult Adult Senior Total

None 69 37 47 309 119 581

11.9% 6.4% 8.1% 53.2% 20.5% 100.0%

V+AVT 23 12 15 102 39 191

12.0% 6.3% 7.9% 53.4% 20.4% 100.0%

V+AVT+AVP 21 11 15 96 37 180

11.7% 6.1% 8.3% 53.3% 20.6% 100.0%

CCR+PPM+VI 24 10 9 81 27 151

15.9% 6.6% 6.0% 53.6% 17.9% 100.0%

CCR+PPM+VI+AVT 21 8 8 71 24 132

16.0% 5.7% 6.1% 54.0% 18.3% 100.0%

SC+CCR+PPM+Q 33 18 9 52 20 132

25.0% 13.6% 6.8% 39.4% 15.2% 100.0%

SC+CCR+PPM+Q+V+AVT+AVP 7 3 2 11 4 27

25.9% 11.1% 7.4% 40.7% 14.8% 100.0%

https://doi.org/10.1371/journal.pone.0179315.t009
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reflects the assumption that many influenza deaths will occur among those with weaker

immune systems. Interventions had relatively little effect on the age-specific distribution of

mortality, suggesting that age-specific mortality rates dominate mortality distribution, rather

than rates of symptomatic infection. Because influenza-related mortality is such a rare occur-

rence, even significant shifts in age-specific infection rates had relatively little effect on mortal-

ity distributions.

Fig 5 presents the cumulative number of deaths projected to occur in the first 100 days of a

pandemic outbreak across the seven interventions of interest. Deaths begin accumulating

almost two months after initial seeding of infected individuals. While mortality totals in “no

intervention” and pharmaceutical intervention scenarios appeared to be levelling off after 100

days, non-pharmaceutical interventions did not demonstrate similar rate reductions, suggest-

ing a threat of a prolonged first wave or more severe second wave.

Fig 4. Daily ICU demand, charted as the percentage of all ICU beds in the Ottawa–Gatineau CMA,

across seven interventions of interest.

https://doi.org/10.1371/journal.pone.0179315.g004

Table 10. Predicted number of deaths, and percentage of total mortality accounted for by each age group.

Intervention

Age group

Infant Child Young adult Adult Senior Total

None 4 4 27 179 150 364

1.1% 1.1% 7.4% 49.2% 41.2% 100.0%

V+AVT 1 1 9 58 49 118

0.8% 0.8% 7.6% 49.2% 41.5% 100.0%

V+AVT+AVP 1 1 8 54 45 109

0.9% 0.9% 7.3% 49.5% 41.3% 100.0%

CCR+PPM+VI 1 1 4 35 25 66

1.5% 1.5% 6.1% 53.0% 37.9% 100.0%

CCR+PPM+VI+AVT 1 1 4 31 22 59

1.7% 2.4% 6.7% 52.2% 37.0% 100.0%

SC+CCR+PPM+Q 1 1 4 24 25 55

1.8% 1.8% 7.3% 43.6% 45.5% 100.0%

SC+CCR+PPM+Q+V+AVT+AVP 0 0 1 5 5 11

0.0% 0.0% 9.1% 45.5% 45.5% 100.0%

https://doi.org/10.1371/journal.pone.0179315.t010
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3.5 Economic analysis

Estimates of the economic burden for an influenza pandemic—for the seven intervention sce-

narios of interest—ranged from CAD $115 million to $2.15 billion in the Ottawa-Gatineau

CMA alone. The cost breakdown for each intervention scenario is presented in Table 11, with

more detailed, intervention-specific summaries available in S8 Table. Of the interventions

that were subject to economic evaluation, a layered non-pharmaceutical approach, in combi-

nation with antiviral therapy, seemed to reduce the overall economic burden the most. Inter-

vention costs per life-year saved are presented in Table 12. Vaccination appears to be the most

cost-effective approach, followed by other pharmaceutical measures, voluntary isolation and

Fig 5. Cumulative mortality over the first 100 days of a pandemic influenza outbreak across seven

interventions of interest.

https://doi.org/10.1371/journal.pone.0179315.g005

Table 11. Predicted costs (CAD) of pandemic-associated morbidity and mortality, as well as key intervention inputs.

Cost category

Intervention

None V+AVT V+AVT+AVP CCR+PPM

+VI

CCR+PPM+ VI

+AVT

SC+CCR+ PPM

+Q

SC+CCR+PPM+Q+V+AVT

+ AVP

Hospital bed days 10,303,296 3,396,920 3,188,520 2,642,512 2,334,080 2,292,400 450,144

ICU bed days 12,087,200 4,001,280 3,751,200 3,146,840 2,771,720 2,750,880 541,840

Deaths (infant) 9,420,688 2,355,172 2,355,172 2,355,172 2,355,172 2,355,172 0

Deaths (child) 8,830,976 2,207,744 2,207,744 2,207,744 2,207,744 2,207,744 0

Deaths (young adult) 52,830,738 17,610,246 15,653,552 7,826,776 7,826,776 7,826,776 1,956,694

Deaths (adult) 245,961,394 79,696,988 74,200,644 48,093,010 42,596,666 32,978,064 6,870,430

Deaths (seniors) 63,644,400 20,790,504 19,093,320 10,607,400 9,334,512 10,607,400 2,121,480

Lost school days 72,194 23,514 21,860 5,044,494 4,962,104 910,837,138 794,463,188

Lost work days (YA

+ adults)

1,819,212 600,371 566,482 38,086,197 37,429,987 1,179,410,918 1,023,034,132

Lost work days

(seniors)

83,759 25,609 23,876 583,812 572,259 599,601 314,242

Vaccinations 0 8,724,240 8,724,240 0 0 0 8,724,240

Antivirals 0 7,783,530 9,048,375 0 2,506,608 0 2,593,125

Masks 0 0 0 747,792 747,792 747,792 747,792

Total 405,053,858 147,216,118 138,834,986 121,341,749 115,645,420 2,152,613,885 1,841,817,306

https://doi.org/10.1371/journal.pone.0179315.t011
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personal protective measures. Interestingly, there does not appear to be substantial cost-effec-

tiveness either in combining antiviral therapy and prophylaxis or adding antiviral therapy to a

layered non-pharmaceutical intervention. The least cost-effective approaches incorporated

school closures, which resulted in massive costs associated with lost school and work days,

with relatively little additional benefit in terms of life-years saved.

3.6 Sensitivity analysis

The sensitivity analyses detailed in S9 Table produced three main findings. First, personal pro-

tective measures, voluntary isolation, quarantine and vaccination all demonstrated a wide

range of potential outcomes, depending on parameter assumptions. School closures, commu-

nity-contact reduction, antiviral therapy and antiviral prophylaxis exhibited relatively little

change between BG, WC and BC scenarios. Vaccination and personal protective measures

showed particularly high sensitivity to shifting assumptions, with all six health outcome counts

shifting over 100% between BC and WC scenarios.

Second, interventions to interrupt community transmission became less effective as trans-

missibility increased. As shown in Table 13, all interventions produced a smaller reduction in

the number of symptomatic cases relative to no intervention under a higher transmissibility

parameter, though the order of interventions in terms of effectiveness did not change. The dif-

ferential impact between BG, BC and WC intervention scenarios was also smaller at higher

disease transmissibility, though a similar effect was not observed at a higher hospitalization

rate.

Third, increasing the hospitalization rate had a much more dramatic effect on health out-

comes than did increasing disease transmissibility. Table 14 presents the “no intervention”

findings for the four scenarios. The higher transmissibility in Scenario 2 led to more infections,

Table 12. Predicted life-years lost and cost per life-year saved, by intervention

Intervention Life-years lost Cost per life-year saved (relative to no intervention)

No intervention 9,421 N/A

V+AVT 3,026 $2,581

V+AVT+AVP 2,801 $2,685

CCR+PPM+VI 1,767 $6,671

CCR+PPM+VI+AVT 1,607 $6,752

SC+CCR+PPM+Q 1,393 $260,472

All interventions 267 $199,888

https://doi.org/10.1371/journal.pone.0179315.t012

Table 13. Percent (%) reduction in number of symptomatic cases, given influenza transmissibility

parameter equivalent to Ro of 1.65 or 1.80.

Intervention Transmissibility parameter (τ)
τ = 0.275 τ = 0.3

SC -1.1 -0.8

CCR -0.6 -0.4

PPM -16.4 -8.8

VI -36.5 -27.5

Q -37.7 -28.2

V -7.9 -6.1

AVT -0.2 -0.1

AVP -2.8 -0.9

https://doi.org/10.1371/journal.pone.0179315.t013
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but only relatively small increases in mortality and hospital-resource use. The higher hospitali-

zation rate in Scenario 3, however, led to large increases in predicted hospital resource demand

and mortality relative to Scenario 1, despite having the same transmissibility and fewer symp-

tomatic cases.

4. Discussion

The objective of this study was to assess the threat posed by the emergence of a novel, trans-

missible pandemic influenza strain, with respect to potential health and economic burdens. A

key area of focus was the assessment of the adequacy of hospital-resource capacity to accom-

modate expected increases in patient demand, both in acute and intensive-care settings. To

accomplish this, we developed and validated InFluNet, a novel mathematical model, which

incorporates stochastic elements to account for uncertainty in disease transmission dynamics.

Using a simulated population representative of the Ottawa–Gatineau CMA, we suggest that

the timely implementation of a layered, multi-pronged intervention strategy will effectively

control pandemic transmission and protect hospital resource adequacy. However, even aggres-

sive intervention simulations produced illness attack rates over 10% and over 100 deaths. The

economic burden is expected to be high, estimated between CAD $115 and $405 million, with

costs rising into the billions when extended school closure is implemented. Our model sug-

gests that the most cost-effective approach to pandemic control is early pandemic vaccination

combined with antiviral therapy and prophylaxis. However, a review of the results from all 192

scenarios (S2–S7 Tables) showed a steep diminishing return on investment associated with

the addition of antiviral treatment and prophylaxis to an effective vaccination campaign, sug-

gesting that much of the cost-effectiveness of pharmaceutical interventions is driven by strong

vaccination campaigns. In situations where vaccines may be unavailable or in short supply, a

combination of community-contact reduction, personal protective measures, voluntary isola-

tion and antiviral therapy was also found to be highly cost-effective. However, our estimates

did not account for the potential costs of community-contact reduction, which may include

shifts in consumer behaviour.

Vaccination, personal protective measures and isolation of infected individuals were found

to be the most effective interventions, whereas school closure, community-contact reduction,

antiviral therapy and antiviral prophylaxis had less effect on pandemic burden. Sensitivity

analysis suggested that the most effective interventions were also those most susceptible to

change under shifting assumptions of effectiveness, adherence and timing. All interventions

became less effective in limiting transmission as disease transmissibility increased. In all cases,

delayed interventions were significantly less effective than cases in which the intervention was

implemented from the start of the simulation, suggesting the need for strong and proactive

preparedness planning. Sensitivity analysis also suggested that a more virulent strain, with a

Table 14. Health outcome summaries for four pandemic scenarios [Scenario 1: τ = 0.275; hospitalization rate = 0.4%; Scenario 2: τ = 0.3; hospitali-

zation rate = 0.4%; Scenario 3: τ = 0.275; hospitalization rate = 1.0%; Scenario 4: τ = 0.3; hospitalization rate = 1.0%].

Outcome Scenario

1 2 3 4

Symptomatic cases 677,546 713,920 675,699 712,553

Hospitalizations 2,472 2,633 4,893 5,217

ICU 580 612 1,149 1,200

Peak hospital demand (%) 14 16 27 32

Peak ICU demand (%) 90 103 179 204

Deaths 363 400 717 791

https://doi.org/10.1371/journal.pone.0179315.t014
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higher hospitalization rate, is of greater concern than a more transmissible one, with a hospi-

talization rate of 1% threatening to overwhelm hospital resource capacity even under moderate

transmissibility assumptions.

Pharmaceutical and non-pharmaceutical interventions resulted in different effects on the

evolution and progression of the pandemic. While pharmaceutical interventions did little to

alter the location of transmission events or age-specific burden, non-pharmaceutical interven-

tions tended to redistribute more transmission events to the household and community, as

well as to younger age groups. This may be because we did not model age-specific targeting of

pharmaceutical interventions and assumed that young adults and adults had a higher commu-

nity-contact rate than did other age groups; as a result, community-contact reduction and vol-

untary isolation seemed to disproportionately benefit these age groups.

A common simplification in modelling studies is the assumption of homogenous mixing,

wherein individuals are assumed to interact equally across age and geographic groups [96].

This is problematic, as it can overestimate the final pandemic size, leading to unrealistic pre-

dictions of hospital-resource strain and the scale of intervention required for transmission

containment [41, 97]. Further, it precludes analysis of particular interventions targeted

towards specific age groups, such as vaccination campaigns prioritizing children or the elderly.

To avoid this, InFluNet models a two-layered system of heterogeneous mixing, wherein indi-

viduals in different age groups interact at different rates depending on their location, reflecting

the age- and location-dependent forces that will influence disease transmission rates.

Our vaccination simulations assumed that a well-matched pandemic vaccine would be

available at the onset of the pandemic; this may represent an unlikely scenario, as vaccine

production, development and distribution can take over six months [16, 31]. However, we

included this intervention as a means of evaluating the impact of the intervention were it to be

available. It should also be noted that logistical challenges, vaccine hesitancy and limited stock-

piles of consumables can further constrain the achievement of optimal coverage levels. The

effectiveness of timely vaccination suggests value in strengthening international collaboration

with regard to surveillance and sharing of circulating influenza strains. Also, by assuming that

older age groups maintain some immunity to the pandemic strain, we are modelling the emer-

gence of a pandemic strain that is not entirely novel: this reflects the experience of the past

four pandemics but could underestimate population susceptibility to an entirely novel strain,

such as an avian influenza. It should also be noted that antiviral prophylaxis may only be avail-

able in the early stages of an outbreak, after which contract tracing may become infeasible

[30]; we do not account for this in our model.

Pharmaceutical interventions tended to reduce the overall burden of the pandemic without

affecting its timing. Non-pharmaceutical interventions, by contrast, tended to delay the develop-

ment of the pandemic to an extent that the pandemic was not completed after 100 days. We used

100 days as the upper limit of pandemic-wave duration, but such containment of transmission

could lead to either a prolonged wave or more severe second wave. This is because pharmaceutical

measures contribute to shifting the susceptibility profile of a population, whereas non-pharma-

ceutical measures contain transmission without affecting the population profile. As a result, if

non-pharmaceutical measures are retracted prematurely, there is the risk of disease re-emergence.

The present study is subject to certain limitations. First, we do not account for possible

adverse side effects from pharmaceutical interventions, which may marginally reduce the

health benefit of mass vaccination [33] and antiviral prophylaxis [98]. We assumed that these

associated risks would be insignificant in the context of other unavoidable uncertainties in

model assumptions.

Second, we treat the entire CMA as a single homogenous area. While individuals are likely

to mix preferentially in neighbourhood and workplace pockets, we decided that the most
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effective method of evaluating macro-level threats to the community and health system would

be to treat the CMA as a single unit.

Third, we have excluded analysis of preferential targeting of at-risk individuals—and associ-

ated ethical considerations—as outside the scope of this analysis, prioritizing instead an assess-

ment of community-level practices to control pandemic burden.

Fourth, we do not include every conceivable intervention, excluding for example hospital

triage protocols and influenza helplines. Hospital triage and influenza helplines were excluded

because we view their main benefit as being a reduction in unnecessary hospital visitation, and

our hospitalization rate already assumed that only those needing hospitalization would be

admitted. However, we note that triage protocols could increase the proportion of individuals

—especially seniors—that die outside of hospital settings. We also did not model nosocomial

infection and therefore did not examine the value of hospital-infection control practices.

Fifth, we chose to model social-contact behaviour based upon empirical data from the

United States, as none were available in Canadian contexts. While this may skew our estimates

slightly, similar contact-rate assumptions in previous modelling studies of the mid-sized

Ontario cities London [39] and Hamilton [33] suggest that the same contact structure would

apply in Ottawa.

Sixth, while agent-models (ABMs) are more effective at modelling the stochasticity inherent

in disease transmission, the decision was made to pursue a differential equation models (DEMs).

ABM models require a large computational burden and, given the number of InFluNet compart-

ments alongside the age-specific and location-specific transmission dynamics, an ABM would

have obstructed the depth of analysis, limited sensitivity analysis and impeded its uptake among

public-health practitioners with limited modelling training [99]. As a secondary objective of this

project was to construct a model that was scalable to different populations and accessible to pol-

icy audiences, and considering the output differences between DEMs and ABMs are small within

the larger scope of parameter uncertainty, we chose to construct a DEM.

Lastly, as with all prospective mathematical models, InFluNet is subject to a high degree of

uncertainty; this is particularly true in our case, where a high level of analytical complexity

necessitates numerous assumptions relating to disease and intervention characteristics. We

therefore emphasize that the results of our model should be interpreted with caution and are

best interpreted as general patterns of intervention effectiveness rather than specific predic-

tions of the number of likely cases, hospitalizations and deaths. Future research can add to this

analysis through in-depth assessment of targeted interventions, based on age or risk profile

and evaluation of other communities to assess community characteristics that may lead to

higher pandemic burdens and strain on health system capacity.

The strength of InFluNet is its incorporation of empirical social contact, disease and inter-

vention data to chart pandemic progression against real-world hospital-capacity data. It also

allows the most complex analysis of mitigation strategies, helping to inform pandemic pre-

paredness planning in both community and hospital settings. We are aware of no other mathe-

matical models that incorporated such diverse intervention bundles alongside our broad range

of health and economic endpoints. The results of this initial analysis suggest that the hospital

capacity of the Ottawa–Gatineau region will be adequate to accommodate a transmissible but

mild pandemic influenza under most intervention strategies but that it could quickly become

overwhelmed by a more virulent strain.

5. Conclusion

This study provides valuable new insights in pandemic preparedness, presenting a novel

model of pandemic transmission as it relates to health and economic outcomes and hospital-
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surge capacity. Our analysis suggests that personal protective measures, isolation of infected

individuals and vaccination are most effective at containing pandemic transmission. Even in

situations where vaccines are unavailable, a layered approach incorporating the timely imple-

mentation of multiple non-pharmaceutical interventions is likely to effectively contain pan-

demic transmission and maintain the adequacy of hospital resource capacity in the Ottawa–

Gatineau area. However, we found that even small increases in disease transmissibility or viru-

lence constitute a significant threat, both in terms of surges in patient demand and overall bur-

den. Given the need for timely interventions, future studies are needed to assess optimal

intervention strategies under a broad range of disease, intervention, population and resource

assumptions.
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